Fast GNSS satellite signal acquisition method based on multiple resamplings

نویسندگان

  • Yong Wang
  • Gang Mao
چکیده

A fast Global Navigation Satellite System (GNSS) satellite signal acquisition method based on resampling is presented. In contrast to traditional approaches, which perform a single-round search with a high data rate, the proposed method introduces a signal acquisition mechanism that uses data resampling. Starting from a resampled data rate slightly above the Nyquist frequency, the proposed method conducts multiple rounds of searches with an increasing sampling rate. After each round of searching, the satellites are sorted according to their relative signal strengths. By removing satellites at the bottom of each sorted list, the search space for satellite acquisition is continuously pruned. If a sufficient number of satellites are not acquired when the original data rate is reached, the method will switch to the weak-signal detection mode and use non-coherent integration for the satellites at the top on the list. The non-coherent integration process continues until either a sufficient number of satellites are acquired or the maximum number of steps is reached. The experimental results show that the proposed method can acquire the same set of satellites as traditional methods but with a considerably lower computational cost. The proposed method was implemented in a software-based GNSS receiver and can also be used in hardware-based receivers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance of Lifting-circular Wavelet Scheme for Signal Acquisition in GNSS Receivers

This study proposes a novel method to acquire the navigation signal parameters for Global Navigation Satellite System (GNSS). This method utilizes modified discrete wavelet transformer (MDWT) to reduce operation samples of circular convolution during signal acquisition process and to divide the wavelet space, indicating that the MDWT is better in de-correlation ability and signal acquisition pe...

متن کامل

Application of Mixed-radix FFT Algorithms in Multi-band GNSS Signal Acquisition Engines

Due to their fast operation, Fast Fourier Transform (FFT)-based coarse signal synchronization methods are an attractive option for Global Navigation Satellite System (GNSS) receiver baseband signal processing. However, there are several reasons why the utility of FFT-based methods is dependent on understanding the trade-off between synchronization speed and the required processing power. Firstl...

متن کامل

A Novel Sampling Approach in GNSS-RO Receivers with Open Loop Tracking Method

Propagation of radio occultation (RO) signals through the lower troposphere results in high phase acceleration and low signal to noise ratio signal. The excess Doppler estimation accuracy in lower troposphere is very important in receiving RO signals which can be estimated by sliding window spectral analysis. To do this, various frequency estimation methods such as MUSIC and ESPRIT can be adopt...

متن کامل

A Recursive Quasi-optimal Fast Satellite Selection Method for GNSS Receivers

Marc-Antoine Fortin is currently pursuing his Ph.D. in the field of GNSS receivers’ robustness at École de technologie supérieure (ÉTS) in Montréal, Canada. He previously received an Electrical Engineering Master’s degree from École Polytechnique de Montréal (Canada) in 2005 and a Bachelor’s degree in the same field from Université de Sherbrooke in 2003 (Canada). He is interested in new methods...

متن کامل

Fast M-Sequence Transform and Secondary Code Constraints for Composite GNSS Signal Acquisition

In this paper, the problem of coherently extending the integration time for the acquisition of new Global Navigation Satellite System (GNSS) signals is addressed. Unlike the acquisition of legacy GNSS signals, the presence of secondary codes allows the polarity of the transmitted signal to change each primary code period. These polarity changes have to be recovered and symbol combinations have ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016